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Problem

Consider a sequence S[0,n) of n positive and monotonically 
increasing integers, i.e., S[i-1] ≤ S[i] for 1 ≤ i ≤ n-1, possibly repeated.

How to represent it as a bit vector in which each original 
integer is self-delimited, using as few as possible bits?
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Huge research corpora describing different space/time trade-offs.

• Elias gamma/delta [Elias-1974] 
• Variable Byte [Salomon-2007] 
• Varint-G8IU [Stepanov et al.-2011] 
• Simple-9/16 [Anh and Moffat 2005-2010] 
• PForDelta (PFD) [Zukowski et al.-2006] 
• OptPFD [Yan et al.-2009] 
• Binary Interpolative Coding [Moffat and Stuiver-2000]
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Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents 
in which t appears.

Given a textual collection D, each document can be seen as a 
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.
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Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
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Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, 
such as: “return me all documents in which terms {t1,…,tk} occur”.
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Genesis - 1970s

Peter Elias 
[1923 - 2001]

Robert Fano 
[1917 - 2016]

Robert Fano. On the number of bits required to implement an associative 
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address 
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).
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Genesis - 1970s

Peter Elias 
[1923 - 2001]

Robert Fano 
[1917 - 2016]

Robert Fano. On the number of bits required to implement an associative 
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address 
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

Sebastiano Vigna. Quasi-succinct indices. 

In Proceedings of the 6-th ACM International Conference 
on Web Search and Data Mining (WSDM), 83-92 (2013).

40 years later!
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(less than half a bit away [Elias-1974])

optimal
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Library Author(s) Link Language

folly Facebook, Inc.
https://

github.com/
facebook/folly

C++

sdsl Simon Gog
https://

github.com/
simongog/sdsl-lite

C++

ds2i
Giuseppe Ottaviano 
Rossano Venturini 
Nicola Tonellotto

https://
github.com/ot/ds2i C++

Sux Sebastiano Vigna http://
sux.di.unimi.it Java/C++

https://github.com/facebook/folly
https://github.com/simongog/sdsl-lite
https://github.com/ot/ds2i
http://sux.di.unimi.it/
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Killer applications

1. Inverted Indexes

3. Compressed Tries for N-Grams

2. Social Networks
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Strings of N words.
N typically ranges from 1 to 5.

13

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11 
billion grams.

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.
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N-grams - Challenge

Store massive N-grams datasets in compressed space such 
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count 
(integer)

Active field of research 
Many software libraries 

• KenLM [Heafield, WMT 2011] 
• BerkeleyLM [Pauls and Klein, ACL 2011] 
• ExpGram [Watanabe at el., IJCNLP 2009] 
• IRSTLM [Federico et al., ACL 2008] 
• RandLM [Talbot and Osborne, ACL 2007] 
• SRILM [Stolcke, INTERSPEECH 2002]

probability weight 
(floating point)

hash + time 
   space-

trie + space 
   time-
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Remember: 
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log(u/n) + 2 bits 

per integer
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Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine 
Intel Xeon E5-2630 v3, 2.4 GHz 
193 GB of RAM, Linux 64 bits

C++ implementation 
gcc 5.4.1 with the highest 

optimization setting

will you notice this?• brings approximately 30% more time
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Experimental Analysis - Overall comparison

2.3X 2.5X

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but more than twice smaller.
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Summary
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Elias-Fano encodes monotone integer sequences 
in space close to the information theoretic minimum, 
while allowing powerful search operations, namely 

Predecessor/Successor queries and random Access.

Successfully applied to crucial problems, such as 
inverted indexes, social graphs and tries representation.

Several optimized software implementations are available.
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Thanks for your attention, 
time, patience!

Any questions?
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