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Vibes
Analyzing emotions in
podcasts

Note: This was a presentation given to Elena Glassman's group in the
Harvard CS department on Thursday, February 27, 2025. Thanks to
everyone for their attention and feedback!

This version was auto-generated from the slides by  and
while it doesn't really work as a standalone blog post I figured I'd put it
online as an annotated presentation, in the spirit of the other messy first
drafts on my .
Most of the text below the slides written after the presentation was
complete and I've tried to keep it reasonably close to what was
discussed.

Feel free to skim.

Hi everyone, it's great to be here. Elena and I were chatting recently and
she graciously invited me to come and share a little side project I've
been working on that you might find interesting.

Please stop me at any time if you want to comment or ask anything.

iA Presenter

personal site

https://ia.net/presenter
https://yuri.is/


About me

My background is in computer science and linguistics,
and professionally I've spent my career working at
startups and as an independent data visualization
consultant for companies of all sizes.

My work integrates full-stack engineering, data analysis,
and design, with the aim of helping people understand
and control complex systems.

I'm also the co-founder of an infrastructure observability
startup where we use fine-grained telemetry from the
Linux kernel to help people make their computer
programs more efficient.

In my free time I work on projects a bit more towards the
humanities side of things -- like making 

, and .
interactive

generative art tools visualizing dog names

http://weavesilk.com/
https://observablehq.com/@yurivish/the-long-tail-of-dog-names




Two parts
1. A story from the
past
2. The podcast project

This talk is made up of two parts.

First, I'd like to tell the story of some work I
did over a decade ago, from 2012 to 2015,
exploring the use of vector space
representations of text to build tools for
understanding "large" (ish) collections of
text documents (eg. 10,000 to 100,000
product reviews).

Then I'll talk about a little side project I've
been tinkering with lately which is a bit of a
spiritual successor to some of that work.



Once
upon a
time...
In a land
far far
away...
Cambridge)

This work was done in collaboration with the rest of my team at a
startup I worked at over a decade ago, and in particular in close
collaboration with Elia Robyn Lake, Jason Alonso, Ken Arnold,
Avril Kenney, Christina Laverentz, Alice Kaanta, and Andrew Lin.
We were all early employees (or cofounders) at an AI company
called Luminoso that spun out of the MIT Media Lab.
The company had its origins before the deep learning revolution
and was the commercialization of research into vector-based text
representations that combined background knowledge together
with the knowledge from a body of documents.
The background knowledge came from a graph-based knowledge
representation, , which was created and maintained
by members of the founding team. We had a proprietary data
pipeline that would "blend" this background knowledge together
with conceptual associations derived from the user's document
set.

ConceptNet

https://conceptnet.io/


How can you
make sense of

10,000 product
reviews?

Our primary commercial focus was trying to
help companies understand their users better.

In particular, while there were well-established
techniques for analyzing survey response data
that was numeric, very little was known in the
industry about how to deal with freeform text.

This text, which sometimes contains the most
valuable feedback because it can answer
questions you didn't think to ask, would often
be discarded due to the lack of good
techniques and tools.



Our answer:

The
Concept
Cloud

In addition to our vector-based models, another innovation was on the
presentation side, and was something we called a Concept Cloud.

Word clouds are famously considered to be poor data visualizations
since only the size of words is meaningful, leaving other data channels,
such as the positions and colors of the words, as free parameters
chosen somewhat arbitrarily. This makes word clouds easy to
misunderstand since there is little signal and a lot of noise.
But what if you make all of those other channels meaningful?

That's what the Concept Cloud did. We called it a Concept Cloud, since
the visualized elements were the high-dimensional concept vectors
associated with words and phrases rather than the words themselves.

By default we would lay the cloud out based on a dimensionality
reduction to 2D, and would use color dynamically to indicate
associations of individual concepts with user-selected topics.
I have a  together with  for part of this idea.patent Elia Robyn Lake

https://patents.google.com/patent/US9164667B2/en
https://github.com/rspeer


Here's what the user interface looked like.
The cloud shows the most relevant concepts, arranged with a
UMAP-like technique and colored by user-selected topics, in this
case "Tablet" and "Amazing".
The data here is roughly 10,000 product reviews of the Amazon
Kindle Fire tablet, and you can see the "Tablet" cluster up top,
with words like "iPad" and a "Device" colored blue, and words
related to "Amazing" colored red, such as "Fantastic", "Speakers",
and "Screen".

Unlike today's vector embeddings, which capture background
knowledge only, ours captured conceptual associations in terms
of both the common-sense meanings of words -- eg. "Tablet" is
related to "iPad" and "Device" -- as well as document-based
associations, such as the relationship between "Amazing" and
"Speakers" (since this device had really good audio quality).



If you click on a word, the interface
would highlight related words. For
example, clicking on "Browsing" will
fade out all of the concepts that are
unrelated to it. The highlighted words
are those that relate to browsing in
some way, such as "Surfing" and "Wi-
Fi".



If you click on "Audio" instead, then you see that the
most related words are things like "Speakers" and
"Sound" and "Amazing" again.

This is because in the collection of product reviews
we're looking at, the speakers are, in fact, amazing.

Unlike the other clusters we've seen so far, the related
words for "Audio" are pretty scattered. This is because
the two-dimensional layout cannot possibly represent all
relationships accurately in a two-dimensional space.

It can be really useful to organize, for example, all of the
"Amazing"-related concepts together. So for this, we had
a feature that allowed you to set a particular topic as an
axis. For example, let's make the X axis be "Amazing".



Here are the same words as before but rearranged
so that all of the words with a high relatedness to
"Amazing" are on the right.

Since that word is also selected, you can see the
same relationship in the color gradient too.

The other thing to notice here are the numerical
scores on the left among the user-selected topics.
We'll come back to those later.
These numbers tell you that "Amazing" is 100%
related to itself, 64% related to "Audio", and 17%
related to "Annoying". Under the hood, these were
the dot product relationships between the vectors for
those terms.)



Looks cool,
but...

Our clients thought that this cloud looked
amazing and really enjoyed playing with it. They
would nod sagely when we told them that "Audio"
is 64% related to "Amazing", and would walk
away feeling wise.
I was not so easily satisfied, and eventually
realized that this was actually a deeply
unproductive way to present our information,
even though it contains some seeds of greatness.

I was fairly inexperienced at this kind of work in
2013, and it took me a while to understand the
issues that I'm about to explain.



What's
wrong
with it?
A few things...
It's uninterpretable –
what does "64%
association" mean?

So what's wrong with the interface? Well one thing that's wrong
are these numbers. When we say that "Audio" is 64% related to
"Amazing", what on earth does that actually mean? That number
is not interpretable, and in fact even the people at the company
did not have a clear answer as to what that number means,
beyond "dot product between normalized high-dimensional
concept vectors".
In terms of interpretability, the number itself had issues too -- our
vectors conflated the background knowledge with the domain
knowledge in a way that we could not subsequently unweave.
This makes it hard to know whether a high relatedness score is
due to the user's data or the background knowledge.

similar issues still come up today with both LLM-based analysis
where the model can interpret data unexpectedly, and with vector
embeddings, whose vectors can have non-obvious distance
relationships.



What's
wrong
with it?
A few things...
It's ungrounded  Only
derived data is shown,
not the underlying
documents

Another problem is that our user interface shows
only derived data. The original documents are
nowhere to be seen, making it hard or impossible
for the user to question the model.
While we did eventually add a documents sidebar
there were other invisible modeling choices, such
as deciding which words to include in the
concept cloud and how to size them, which made
it hard or impossible to interpret our visualizations
with confidence, and could significantly impact
the results of data analyses.



What's
wrong
with it?
A few things...
It's fuzzy  Hard to
draw firm conclusions
on the basis of ill-
defined vector dot
products

Another issue is the fact that we were directly reporting "internal"
model parameters to the user.

These numbers, representing associations between concepts, can be
extremely useful as input features to a machine learning algorithm.
But they are not good tools for human thought -- in my experience, they
are in practice impossible to use correctly for understanding or
decision-making, even if it is theoretically possible.

Decision are discrete -- which product development should be
prioritized for the next iteration of our product?  but our reporting
could not be easily used to confidently justify those conclusions since
there was no way to sharpen the scores into something closer to a
higher-level decision within the system.

This applied to the scores we reported to the user, the color
highlighting, and the positions along the x-axis or in the default layout –
everything is vaguely meaningful but imprecise and bore a complex
relationship to the ground truth documents underlying the analysis.



What to do?

So, what to do?



Possible
solution: tags

My idea was to use tagging, which
can be seen as a form of binary
classification, as a firmer basis for
interpretable data analysis.

By tags I mean the same kind of thing
as hashtags or tags on old-school
blogs.



Tagging
Tag documents as "amazing" if
they express amazement, or
"audio quality", "annoying", ...

Crucially, each tag represents a
binary decision!

–

The idea was that our system would help the
user interactively create curated document
sets through a tagging process, and would
then explore the relationships between tags as
a more grounded form of analysis.

So if you have a bunch of product reviews, you
could, for example, use our system to tag a
subset of them as related to "Audio". Or
perhaps for some tags the appropriate unit of
analysis would be a paragraph or sentence,
allowing more targeted analysis.



Benefits
This is more grounded & interpretable1.
This is more concrete – a product review
either has the tag or it doesn't.

2.

This forces useful sharpening – what
should it mean to tag a review as
"awesome"?

3.

Tags represent sets of documents. Eg. You
can explore tag-tag relationships by
intersecting their document sets!

4.

So here are a bunch of the advantages of this kind of
approach.
Compared to vector-based metrics ("A is 64% related to B"),
tag-based metrics ("20% of the documents are tagged C")
are more interpretable since you can sample or inspect
specific documents with that tag to verify the conclusion
yourself by sampling documents and spot-checking them.
And once you've tagged your documents, you can start
exploring the relationships between them in a very concrete
way since set operations (intersection, difference,
segmentation) over tags become meaningful.
To me, '200 reviews are tagged both "Audio" and "Amazing"'
is much more interpretable than '"Audio" and "Amazing" are
64% associated', but more on this on the next slide - this is
also misleading! oh, 2014...



Challenges
Compositionality  Analyzing two tags through
their intersection can be fraught.

–

For example, reviews tagged "Amazing" and
"Audio quality" do not necessarily say good
things about the audio quality.

–

Tag Quality  Auto-tagging at low cost & latency
is possibly still an unsolved research problem!

–

Same for collaborative human/ML tagging
workflows

–

However, this still has a lot of issues. One issue is that
the precise meaning of tags becomes very important,
and composing tags together can require care and
attention to the granularity at which the tags are applied.

For example, reviews tagged "Amazing" and "Audio
quality" do not necessarily say good things about the
audio quality.

And in 2014, the quality of tags was also a big problem
for us because it was difficult to dynamically and flexibly
apply user-specified tags without a lot of erroneous
classifications. This is part of the reason why this
prototype never made it out to production, though I still
think it's a good idea if it can be made to work.



So at the time, this is what my prototype of a solution looked like.
It has a list of tags on the left, corresponding to the topics we saw
before. So you still have "Amazing", "Browser", "Disappointed".
And then next to that, crucially, we actually show the documents.
And we show not just the documents, but actual snippets from the
documents.

In fact, we show multiple snippets from each document, if there
are multiple locations that are considered matches to one or more
tags, with individual phrases highlighted as the justification for
why a particular tag was applied to a document.
This lowers the cost of spot checks since your eye is drawn
immediately to the place where there's a potential
misclassification. This is very useful in the face of unreliable AI
systems.



Moving along from 2014 to
2025...

Podcast
Vibes
Analyzing emotions in
podcasts

So that was all a prelude to my
podcast project, which I've been
working on for the last few weeks. I'll
go through this pretty quickly,
because I guess this is probably
going quite long now. But there's a lot
of heritage from my experiences a
decade ago that apply to analyzing
the emotions in podcasts.



Thesis:
Podcasts
have vibes.

My basic thesis is that podcasts have
vibes. By which I mean, every
podcast inhabits a different part of the
emotional landscape.



Passionate
enthusiasm ·
Emotional
investment and
pride · Delight and
appreciation ·
Appreciation and
enthusiasm for
learning · Gratitude
and admiration ·
Enjoyment · Positive
regard

Shock and disbelief
· Deep anxiety and
betrayal · Fear and
vulnerability ·
Contemptuous
hostility · Fear and
apprehension ·
Profound
uncertainty and
disquiet

For example, here are some emotions
from a few different podcasts.

My basic thesis is that people who
spend time listening to stuff on the
left probably end up in a different
emotional space compared to people
who listen to stuff on the right.



What's important is
the connection
between emotion and
its subject matter.

And it not only matters what emotions
a podcast is putting out  I also really
care what that emotion is being
associated with.

For example, if the person speaking is
disgusted about something, is it an
event? A place? Or is it a person?



Podcasts
inform how
people feel

about a subject

I think that that pretty much everyone,
to one level or another, adopts their
opinions and emotional valences from
their surroundings.

In this way podcasts and other forms
of news reporting provide not only
information, but an emotional
interpretation for complex events.
Kinda like reaction videos.)



Can we get at
those feelings
with language

models?
It turns out LLMs are surprisingly

good at this

So I ran a whole bunch of transcripts
through Claude to extract out subject-
emotion pairs, and it turned out to be
ridiculously good at it.

The only big issue I've noticed is that
it will give incomplete results, ie. drop
subject-emotion pairs even though
they were present in the podcast.)



Here's a screenshot of some of the results from a
podcast episode about food, specifically beans. You
can see the whole thing .

Every quote is grounded to the transcript using
Claude's citations feature, which is fantastic.

And in my data pipeline, I go further and tie the
transcript all the way back to timestamps in the
original audio, so we have end-to-end provenance
and attribution.
In my local prototype, I can view a transcript and its
emotional labeling, and click on any sentence to hear
the relevant segment of the podcast as supporting
evidence.)

here

https://observablehq.com/@yurivish/podcast-vibes


The Prompt
The document you've been provided is an excerpt from a podcast transcript. I'm interested in the subjects being discussed, and how the
speakers feel about those subjects, particularly the value judgments made by the speakers and what these imply about their speakers'
views of the world.
Please organize every emotionally-loaded subject discussed in the transcript into a table in Markdown format, with one row for each
(subject, emotion) pair. Each pair should be between a subject (person, place, or thing) and an emotion (feeling, quality, or vibe) that the
person feels specifically about the subject. If there is more than one emotion associated with a subject, make a new row for each
emotion.

Here is what is most important:

If there are no entries, then return an empty table consisting of the header alone.
Please return just the table.

The first column should have the subject being discussed. Keep the subject short, and ground it in the source material.1.
The second column should have the emotion of that person towards the subject. Include only emotions that indicate how the person
feels about the subject. Be expressive, nuanced, generous and richly emotive in your description, so long as your purple prose is
supported by the text.

2.

The third column should cite supporting quotes to support your assertions.3.
The fourth and final column should be a short remark that frames the supporting quotes in the larger context of the conversation. Do
not refer directly to the speakers.

4.

Completeness: Please include every single subject that has the speaker has an emotion about, whether positive or negative, offhand,
direct, or implied.

–

Correctness: Do not include emotions that are not attributable to specific subjects.–
Speakers only: Do not include emotions of people other than those who are speaking. For example, if the speakers reference
somebody else's emotions, those should not be included in the table.

–

Speaker meta-attitudes: Sometimes a speaker's emotion can be inferred from the way they talk about somebody else's emotion, so
feel free to include those.

–

Citation: Please cite the source documents to support your assertions.–
Richness: Use evocative and nuanced emotional descriptions that stay true to the words uttered by the speakers.–



The table is really useful but also quite large.

What if we want to see an overview?

One way to do this is, like the Concept Cloud,
organize the emotions positive-to-negative emotion
axis.
The green stuff at the top is positive, the red stuff at
the bottom is negative, and the yellow is kind of in
the middle.

I'm particularly amused at the position of canned
beans at the very end of the negative spectrum...
Though, of course, this axis itself is subjective.

More on this: Podcast Vibes Prototyping

https://yuri.is/thinking/podcast-vibes-prototyping/


And here's what I'm currently playing around with locally as a way to
represent the underlying transcript in its original order together with
these LLM-based classifications and annotations.

In my local prototype, I also have the ability to selectively add or remove
particular speakers from the transcript, and re-rank the sentences from
their original order, e.g. from positive-to-negative, or negative-to-
positive, or other criteria.
I like presenting the annotations to the side of the original data because
often the information you're dealing with has a fundamental structure
that people are already familiar with, and using that as an anchor is a
very effective way to make an interface feel intuitive -- it can fit into the
existing mental schema of the person using it.

More advanced visualizations will inevitably need to reorganize and
filter the data, or push up the level of abstraction.

But I've always found it useful to have something where the new data is
treated as an annotation and the original structure is preserved.



Possible
futures

Small picture

Big picture

Comparative analysis of the
same topic across podcasts

–

"Daily Podcast Pulse" –
visualize all of the news
podcasts for a given day

–

Collaborative human/ML auto-
tagging at interactive speeds
(unsolved research problem?

–

Turn this into a tool for
lightweight, flexible analysis of
text datasets

–

Auto-tagging is still hard if you want to do it within a reasonable cost or latency
budget (for interactive exploration).

Another tricky issue is finding a data representation for subject matter that
would enable easily identifying "the same topic" between podcasts. The
current subject descriptions are often too specific for this purpose and need
additional context to disambiguate. I don't know if asking the LLM to generate
a sentence summary that encapsulates all of this context would work, or
whether this would need something more like a hierarchical meaning
representation to do the kinds of flexible topic tagging that I imagine would be
really useful.

A tool I would love to have one day is something I think of as spreadsheets,
but for text.

Spreadsheets are great with numbers, but don't deal well with freeform text.

Lots of real-world datasets -- product reviews, podcast transcripts, chat
messages, email -- are combinations of text and structured data where the
text is really the star of the show.

I would love to have a UI that lets me quickly add tags and explore their
relationships, all the while doing lots of spot checks to make sure that my tags
really mean what I think they mean.



Extra: The Data Pipeline
Parse RSS feeds into Podcasts & Episodes
To process an episode:

I built this in Go using  (job queue) and Postgres.

Transcribe it1.
Extract subjects & emotions w/ a moving window
over sentences.

2.

Deduplicate entries using vector similarity.3.

River

https://riverqueue.com/

